harfang3d/harfang/foundation/sha1.cpp
2021-10-13 14:40:31 +02:00

182 lines
7.0 KiB
C++

/*
Copyright (c) 2011, Micael Hildenborg
All rights reserved.
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:
* Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.
* Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.
* Neither the name of Micael Hildenborg nor the
names of its contributors may be used to endorse or promote products
derived from this software without specific prior written permission.
THIS SOFTWARE IS PROVIDED BY Micael Hildenborg ''AS IS'' AND ANY
EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL Micael Hildenborg BE LIABLE FOR ANY
DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
/*
Contributors:
Gustav
Several members in the gamedev.se forum.
Gregory Petrosyan
*/
#include "foundation/sha1.h"
namespace hg {
namespace sha1 {
namespace {
// Rotate an integer value to left.
inline const unsigned int rol(const uint32_t value, const uint32_t steps) { return ((value << steps) | (value >> (32 - steps))); }
// Sets the first 16 integers in the buffert to zero.
// Used for clearing the W buffert.
inline void clearWBuffert(uint32_t *buffert) {
for (int pos = 16; --pos >= 0;)
buffert[pos] = 0;
}
void innerHash(uint32_t *result, uint32_t *w) {
uint32_t a = result[0];
uint32_t b = result[1];
uint32_t c = result[2];
uint32_t d = result[3];
uint32_t e = result[4];
int32_t round = 0;
#define sha1macro(func, val) \
{ \
const uint32_t t = rol(a, 5) + (func) + e + val + w[round]; \
e = d; \
d = c; \
c = rol(b, 30); \
b = a; \
a = t; \
}
while (round < 16) {
sha1macro((b & c) | (~b & d), 0x5a827999)++ round;
}
while (round < 20) {
w[round] = rol((w[round - 3] ^ w[round - 8] ^ w[round - 14] ^ w[round - 16]), 1);
sha1macro((b & c) | (~b & d), 0x5a827999)++ round;
}
while (round < 40) {
w[round] = rol((w[round - 3] ^ w[round - 8] ^ w[round - 14] ^ w[round - 16]), 1);
sha1macro(b ^ c ^ d, 0x6ed9eba1)++ round;
}
while (round < 60) {
w[round] = rol((w[round - 3] ^ w[round - 8] ^ w[round - 14] ^ w[round - 16]), 1);
sha1macro((b & c) | (b & d) | (c & d), 0x8f1bbcdc)++ round;
}
while (round < 80) {
w[round] = rol((w[round - 3] ^ w[round - 8] ^ w[round - 14] ^ w[round - 16]), 1);
sha1macro(b ^ c ^ d, 0xca62c1d6)++ round;
}
#undef sha1macro
result[0] += a;
result[1] += b;
result[2] += c;
result[3] += d;
result[4] += e;
}
} // namespace
static void calc(const void *src, const size_t bytelength, unsigned char *hash) {
// Init the result array.
uint32_t result[5] = {0x67452301, 0xefcdab89, 0x98badcfe, 0x10325476, 0xc3d2e1f0};
// Cast the void src pointer to be the byte array we can work with.
const unsigned char *sarray = (const unsigned char *)src;
// The reusable round buffer
uint32_t w[80];
// Loop through all complete 64byte blocks.
const size_t endOfFullBlocks = bytelength;
size_t endCurrentBlock;
size_t currentBlock = 0;
while ((currentBlock + 64) <= endOfFullBlocks) {
endCurrentBlock = currentBlock + 64;
// Init the round buffer with the 64 byte block data.
for (int roundPos = 0; currentBlock < endCurrentBlock; currentBlock += 4) {
// This line will swap endian on big endian and keep endian on little endian.
w[roundPos++] = (uint32_t)sarray[currentBlock + 3] | (((uint32_t)sarray[currentBlock + 2]) << 8) | (((uint32_t)sarray[currentBlock + 1]) << 16) |
(((uint32_t)sarray[currentBlock]) << 24);
}
innerHash(result, w);
}
// Handle the last and not full 64 byte block if existing.
endCurrentBlock = bytelength - currentBlock;
clearWBuffert(w);
size_t lastBlockBytes = 0;
for (; lastBlockBytes < endCurrentBlock; ++lastBlockBytes) {
w[lastBlockBytes >> 2] |= (uint32_t)sarray[lastBlockBytes + currentBlock] << ((3 - (lastBlockBytes & 3)) << 3);
}
w[lastBlockBytes >> 2] |= 0x80 << ((3 - (lastBlockBytes & 3)) << 3);
if (endCurrentBlock >= 56) {
innerHash(result, w);
clearWBuffert(w);
}
w[15] = (uint32_t)(bytelength << 3);
innerHash(result, w);
// Store hash in result pointer, and make sure we get in in the correct order on both endian models.
for (int hashByte = 20; --hashByte >= 0;)
hash[hashByte] = (result[hashByte >> 2] >> (((3 - hashByte) & 0x3) << 3)) & 0xff;
}
static void toHexString(const unsigned char *hash, char *hexstring) {
const char hexDigits[] = {"0123456789abcdef"};
for (int hashByte = 20; --hashByte >= 0;) {
hexstring[hashByte << 1] = hexDigits[(hash[hashByte] >> 4) & 0xf];
hexstring[(hashByte << 1) + 1] = hexDigits[hash[hashByte] & 0xf];
}
hexstring[40] = 0;
}
} // namespace sha1
void ComputeSHA1(const void *data, size_t size, std::array<unsigned char, 20> &hash) { sha1::calc(data, size, hash.data()); }
void ComputeSHA1(const std::string &source, SHA1Hash &hash) { ComputeSHA1(source.data(), source.length(), hash); }
std::string ComputeSHA1String(const void *data, size_t size) {
SHA1Hash hash;
ComputeSHA1(data, size, hash);
char hex[41];
sha1::toHexString(hash.data(), hex);
return {hex};
}
std::string ComputeSHA1String(const std::string &source) { return ComputeSHA1String(source.data(), source.length()); }
std::string to_string(const SHA1Hash &hash) {
char hex[41];
sha1::toHexString(hash.data(), hex);
return {hex};
}
} // namespace hg